
XML Digital Signature and its Role in Information

System Security

Sandro Gerić, Tomislav Vidačić
University of Zagreb

Faculty of Organization and Informatics

Pavlinska 2, Varaždin, Croatia

Phone: +385 (0)42 390 857 Fax: +385 (0)42 213 413

e-mail: sandro.geric@foi.hr, tomislav.vidacic@gmail.com

Abstract - XML signature is form of digital signature

designed for use in XML transactions. The XML Digital

Signature standard defines a schema that is used for storing

the result of a digital signature operation applied to (in most

cases) XML data. Like non-XML digital signatures, XML

signatures add authentication, data integrity, and support for

non-repudiation to the data that is object of XML digital

signing process. However, unlike non-XML digital signature

standards, XML signature has been designed to both account

for and take advantage of the Internet and XML.

A fundamental feature of XML Signature is the ability to sign

only specific portions of the XML content rather than the

complete document. This is relevant when a single XML

document may have a long history in which the different

components are authored at different times by different

parties, each signing only those elements relevant to it. This

flexibility will also be critical in situations where it is

important to ensure the integrity of certain portions of an

XML document, while leaving open the possibility for other

portions of the document to change. Since data security – in

form of data verification and authorization - represents an

important part of information system security paradigm this

article is addressing the questions and possibilities of

XMLDigSig usage in everyday information system security

procedures.

I. INTRODUCTION

The trends in ICT development and the way the ICT

supports business processes are clearly focused on use of

web based technologies and web services in the last

decade. Web services, as a programming technology,

enable companies to use and integrate different application

modules (e.g. developed by them or third parties) into one

unique information system infrastructure that can be

present in form of real, but also virtual, or on-demand

information system. In case of web services based

information system infrastructure it is important to achieve

a desired and demanded level of security, just like in any

other form of information system infrastructure. Therefore

this article addresses the evolution of web services based

architectures and it’s focused on deployment and

implementation of secure web services.

Just like in other forms of information systems

architectures, in web services based information systems

the question of reliability and security can be addresses in

many different ways – from organizational security

measures, technical, program, legislative, etc. But one form

of security measures that characterizes web services based

information systems is the use of different forms of digital

signatures to ensure the integrity of content and to

authenticate the author (person, company, application

component) of specific content (data, information, service

component, application component). One form of digital

signature specifically design for the use in web content is

XML digital signature, and in this article we will try to

determine if the security level of web services messaging

mechanisms can be improved through the introduction of

XML digital signatures. Namely, the web service’s

technology and the way web services are “working” is

based on exchange of XML messages defined by specific

WSDL format unique to each web service.

II. WEB SERVICES AS AN FORM OF

INFORMATION SYSTEM

INFRASTRUCTURE

The history of information system’s architectures

development was, and still is, motivated with desire for

higher program code re-usability. In that manner different

types of information systems architectures were developed

with time, and each evolutional step used the current and

state-of-the-art technologies. The important step in this

process was emergence of Object Oriented paradigm,

which introduced concepts like inheritance, polymorphism

and data abstraction. Those concepts introduced by Object

Oriented (OO) design provided developers with new level

of code re-usability. But, despite the positive trends in

application development affected in OO design there are

some limitations. One of the most important limitation is

the fact that the classes used in program code have to be

included in it, in other words they have to be accessible in

the application framework. To achieve that it is necessary

to redesign the application structure, to use and store

Application Programming Interface in the class path or to

correctly reference compiled DLL (2) To achieve this all

parts and program components of an application have to be

(physically) stored on one computer, and in the world of

business-to-business integration processes and cross-

organizational information systems this is serious problem.

The next evolutional step in information system’s

architectures development was a set of architectures that

are based on OO concepts, but more focused on

distribution of program components and their

interoperability. The architectures like component based

architecture (CBA), distributed computing emerged to

1844 MIPRO 2012/ISS

response of OO limitations. Component-based

development allows developers to create more complex,

high quality systems, because it provides better means of

managing complexities and dependencies within an

application. A software component is defined as a unit of

composition with contractually specified interfaces and

explicit context dependencies. It can be deployed

independently and is subject to composition by third parties

It is a group of objects with has a specified interface,

working together to provide an application function (9).

Similarly to this the idea of distributed computing was to

set up a communication between two distributed programs

directly on the basic physical network protocol and to use

distributed information system resources (8). As the next

evolutionary step, in this process a communication

middleware framework enables to access a remote

application without knowledge of technical details such as

operating systems, lower-level information of the network

protocol, and the physical network address. As distributed

computing technologies evolve, it becomes increasingly

necessary to provide multiple network implementations to

satisfy various quality-of-service requirements. These

requirements may include timeliness of message delivery,

performance, throughput, reliability, security and other

nonfunctional requirements. (4)

The end of nineties and the evolution of network based

resources and web services defined a new step in

information system architecture evolution that is

characterized with use of network based resources and

technologies. The programming technology that lays

behind architectures like Service-oriented architecture

(SOA), Cloud computing, Software-as-a-Service

architecture is web service technology. Web services can

be implemented using various programming languages and

are therefore heterogeneous from point of their

implementation. In order to work and to connect web

services implemented in different programming languages

each web service (as a program component) has defined an

unique and specific web service interface based on web

service description language (WSDL). WSDL interface

describes all parameters that are necessary for use of

specific web service, like XML message format, procedure/

method/ function calls, ports, etc. Since web service exists

in network environment a XML based messaging system is

used for their communication and control. Therefore, even

IBM defines web services as programs that accept requests

in XML format from other systems across the Internet or

Intranet via lightweight and vendor-neutral

communications protocols (IBM developersWorks, 2003a).

The implementation of web service usually consists of

following processes. Firstly, the web service that requires

access to the another program has to send a method with its

arguments (defined by WSDL interface) through a Remote

Procedure Call (RPC). This is done using Simple Object

Access Protocol (SOAP) (Champion, Ferris, Newcomer

and Orchard, 2002). that is developed and used specifically

for communication between different web services. Each

RPC call is stored in a SOAP message that is constructed

using XML specification and structure defined by web

service WSDL. That way XML document structure

contains all information necessary to start an activity in

web service. After the remote application has received the

SOAP message it will begin to process the content of the

message (it will start to perform a specific operation or

activity defined by message) and after the operation is

finalized it will send the response back to the caller in

XML format (2)

III. SECURITY ISSUES IN MODERN

INFORMATION SYSTEM'S

ARCHITECTURES

Information system’s architectures based on use of web

services are widely spread today. They offer many

advantages compared to “traditional” form of IS

architectures, but also have some concerns, specially from

information system security point of view. Modern IS

architectures usually consist from more than one services

(e.g. web services) that are produced and developed by

different organizations and individuals, that are developed

under different platforms, and operate in different

conditions and under different security management

systems. All those components are connected into one

information system that has to provide its users with the

same level of security as classical IS. And that leads to the

mayor security challenges that can be grouped in four main

categories (5):

 Data security and data control,

 Development and use,

 Authentication,

 Requirement for "off-the-shelf" components.

The focus of this article is on first category – data

security and data control. One of the oldest security

mechanisms that is used for securing data in context of

network based resources, and that has a great popularity in

securing electronic transactions is Secure Socket Layer

(SSL). SSL is used for securing communication path

between two points (user side and server side), and it

provides a sufficient level of security during the transport

but it leaves data unprotected on origin (user) or

destination (server) side.

Although some authors (7) suggest that it is not likely

that data would be tempered during transmission; moreover

identity management and non-repudiation issues have been

looked over in the deployed version of SSL. This has been

a concerning issue for companies wanting to deploy web

services solutions to perform high value business

transactions. (1, 7, 9)

This resulted with a development of a solution that will

secure the data all over their transportation path, and not

only during the process of transport, and that will be

optimized for securing communication between web

services, in other words that will be optimized for securing

XML based transmission. The result was a new form of

digital signature for XML documents developed by W3C

and IETS that provides authentication, data integrity, and

support for non-repudiation of the signed. It is based on

similar algorithms and mechanisms like “standard” forms

of digital signatures, but it has a unique characteristic that

can be used for signing a specific element of XML

MIPRO 2012/ISS 1845

structure, rather than complete document. Just like a

“standard” form of digital signature it defines a verification

algorithm that indicates the originator of the XML

document and thereby revealing the sender’s identity. (1)

IV. XML SIGNATURES

XML Digital Signature (XMLDigSig) is a form of

digital signature that is optimized for signing of XML data.

What differ the XML digital signature mechanism from

“standard” digital signatures is possibility of partial

signature which allows that XML digital signature is used

only on specific tags in XML structure. Beside partial

signature, XML digital signature also has the possibility of

multiple signatures that enables signing of multiple tags in

XML structure.

The XMLDigSig was developed to solve specific

security issues concerning data security and control in

electronic transactions, and later in messaging mechanisms

used in web services. Primarily, it is used to solve

problems like falsification, spoofing, and repudiation.

Comparing with the “standard” digital signatures, the

result of XMLDigSig is stored in <Signature> element

expression, and the result of “standard” digital signature is

represented by a string of code calculated based on input

data. XMLDigSig are suitable for use in the network

environment. Standard digital signature mechanism is

relaying on Certificate Authority, as a third party used for

verifying digital signature certificates and signature itself.

In order to do this an extensive network communication

had to be conducted what in some cases affected the

efficiency of signature confirmation process. The

XMLDigSig is using URI modeling that is incorporated

into network resources, so the entire process of

XMLDigSig verification is more networks efficient.

The result of XMLDigSig is stored in form of XML

syntax that uses <Signature> element. Beside the signature

value, this syntax stores all other information relevant to

XMLDigSig verification. The syntax is defined by W3C

organization, and it’s available through web link:

http://www.w3.org/TR/xmldsig-core/.

The main element of XMLDigSig specification is

<Signature> element. Its child elements are used to store

all information regarding the signature and its verification.

<SignedInfo> element defines references of the algorithm

used for the XML signature creation and points out the

targeted XML data. It is also used to store digest value and

other information. <SignatureValue> element is used for

storing the signature value, and a <KeyInfo> element

contains information about XMLDigSig certificates, like

the public key certificate information that are used during

XMLDigSig verification process.

It was already stated that XMLDigSig can be used to

sign specific elements, specific set of data. To specify the

data that are going to be sign by XMLDigSig mechanism

<Reference> element is used. It specifies the location of

data or XML element that is signed.

XML SIGNATURE FORMAT (11, 12)

<Signature ID ?>

<SignedInfo>

<CanonicalizationMethod/>

<SignatureMethod/>

(<Reference URI ?>

(<Transforms/>) ?

<DigestMethod>

<DigestValue/>

</DigestMethod>

</Reference >) +

</SignedInfo>

<SignatureValue/>

(<KeyInfo/>) ?

(<Object ID ? />) *

</Signature>

The mechanism of XMLDigSig is based on several

steps:

1. To define the URI that will be signed;

2. To calculate the hash value;

3. To write the hash value into the <Reference>

element, with additional information regarding the

algorithms and other information;

4. To standardize the whole <SignedInfo> element,

and calculate its hash and the signature value;

5. To write the signature value to the

<SignatureValue> element;

6. To add certificate/ key information;

7. To combine <SignedInfo>, <SignatureValue>

and <KeyInfo> into the <Signature> element.

XMLDigSig mechanism can be described on the

following example. The goal is to sign 3 sets of data, which

are stored on the folowing URL adresses:

"http://www.foi.hr/index.html" - HTML web page

"http://www.foi.hr/slika.jpg" – file in GIF format

"http://www.foi.hr/xml/popis.xml#JMBAG" – JMBAG

field in popis.xml file

The first step is to calculate the hash values for

specified content stored at http://www.foi.hr/index.html

location. The adresses of content that will be signed are

stored in <Reference> element, and calculated hash value

in <DigestValue> element. Beside that in <DigestMethod

Algorithm> element is written information about used

algorithm (sha1 in this case).

<Reference URI="http://www.foi.hr">

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1

" />

<DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</

DigestValue>

</Reference>

1846 MIPRO 2012/ISS

The same is done for other two data sets, and then is all

combined into <SignedInfo> element.

<SignedInfo Id="Primjer">

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/TR/2001/REC-xml-

c14n-20010315"/>

 <SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-

sha1" />

 < Reference URI="http://www.foi.hr/index.html">

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1

" />

<DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</

DigestValue>

 </Reference>

< Reference URI=" http://www.foi.hr/slika.jpg ">

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1

" />

<DigestValue>j6lwx3rvEPO0v123454NbeVu8nk=</D

igestValue>

 </Reference>

 <Reference URI="

http://www.foi.hr/xml/popis.xml#JMBAG">

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1

"/>

<DigestValue>85214LBIta6skoV5qA8Q38GEw44=</

DigestValue>

 </Reference>

</SignedInfo>

Based on digest values a digital signtaure is formed,

and its value is stored into <SignatureValue> element.

<SignatureValue>PqLeN7E</SignatureValue>

All links and information regarding keys, certificates

and verification process are stored into <KeyInfo>

element.

<KeyInfo>

 <X509Data>

 <X509SubjectName>CN=Sandro

Geric,O=FOI,ST=Varazdin,C=Croatia</X509Subject

Name>

<X509Certificate>125478LkmNHJuzt...KLO9</X509

Certificate>

 </X509Data>

</KeyInfo>

The final step is to combine all previously mentioned

elements of XMLDigSig specification into root

<Signature> element. The result is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<Signature

xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo Id="Primjer">

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/TR/2001/REC-xml-

c14n-20010315"/>

 <SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-

sha1" />

 < Reference URI="http://www.foi.hr/index.html">

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha

1" />

<DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</

DigestValue>

 </Reference>

< Reference URI=" http://www.foi.hr/slika.jpg ">

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha

1" />

<DigestValue>j6lwx3rvEPO0v123454NbeVu8nk=</

DigestValue>

 </Reference>

 <Reference URI="

http://www.foi.hr/xml/popis.xml#JMBAG">

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha

1"/>

<DigestValue>85214LBIta6skoV5qA8Q38GEw44=</

DigestValue>

 </Reference>

</SignedInfo>

<SignatureValue>PqLeN7E</SignatureValue>

<KeyInfo>

 <X509Data>

 <X509SubjectName>CN=Sandro

Geric,O=FOI,ST=Varazdin,C=Croatia</X509Subject

Name>

<X509Certificate>125478LkmNHJuzt...KLO9</X509

Certificate>

 </X509Data>

</KeyInfo>

</Signature>

The verification of XMLDigSig is based on two main

steps:

1. The signature confirmation – the receiver side is

calculating their own hash values (digest) based on

received content (signed data) and information

about used algorithms. The result is calculated

<SignatureValue> that is compared with received

<SignatureValue> content. If they match,

signature confirmation is positive.

2. The reference validation – comparing the

calculated hash value with that stored in the

<DigestValue> element. If they match then the

original data set wasn’t changed

Verification of the XML signature passes, only when all of

the two steps above succeed.

MIPRO 2012/ISS 1847

V. IMPLEMENTATION OF XML DIGITAL

SIGNATURE

An example of application modules that can be used for

XMLDigSig implementation and verification is shown

below (9).

1) Creating a signature

KeyStore keystore=KeyStore.getInstance(“JKS”);

keystore.load(new

FileInputStream(keystorepath),storepass)

X509Certificate cert=

(X509Certificate)keystore.getCertificate(usrdata);

Key key= keystore.getKey(usrdata,keypass);

If (key==null) {System.err.println(“Could not get a

key,”+usrdata);System.exit();}

KeyInfo eyinfo=dsig.SignatureUtil.createKeyInfo(cert);

Element signatureElement=

signatureGen.getSignatureElement();

keyinfo.insertTo(signatureElement,prefix);

signatureContext sigContext=new SignatureContext();

sigContext.setIDResolver(sig);

sigContext.sign(signatureElement,key);

doc.appendchild(signatureElement);

dsig.SignatureUtil.printDocum(do,System.out);

2) Verification of signature

XmlDocument xdoc=new XmlDocument();

xdoc.PreserveWhitespace=true;

XmlTextReader xfile=new XmlTextReader(filename);

xdoc.Load(xfile);

xfile.Close();

SignedXml sx=new SignedXml(xdoc);

XmlNodeList nl=

xdoc.GetElementsByTagName(“Signature”,

“http://www.w3.org/2000/09/xmldsig#”);

sx.LoadXml((XmlElement) nl[0]);

if (sx.CheckSignture())

{Console.Writeline(“Sign check Pass !”);}

else

{ Console.Writeline(“Sign check Fail !”);}

VI. XML ENCRYPTIONS

XMLDig Sig has a possibility to protect the

confidentiality of documents as well. For that purpose

XML encryption technology is used. It is a form of

encryption mechanism optimized for encrypting XML data.

Just like XMLDigSig it enable partial encryption which

encrypts specific tags in XML structure, and multiple

encryption which encrypts multiple tags in XML structure,

or parts of XML document, or entire XML document. It

has a possibility to define specific segments of encrypted

data that can be decrypted by receiver, meaning that it is

possible to determine which part of encrypted data a

receiver can decrypt and which cannot. The use of XML

Encryption prevents some security issues, like XML data

eavesdropping, and it adds an additional level of

functionality and protection to XMLDigSig.

XML Encription is defined by XML specification

available at: http://www.w3.org/TR/xmlenc-core/#sec-

Overview, and it defines following structure that is used for

XML Encryption files.

XML Encryption format (11, 12)

<EncryptedData Id? Type? MimeType?

Encoding?>

 <EncryptionMethod/>?

 <ds:KeyInfo>

 <EncryptedKey>?

 <AgreementMethod>?

 <ds:KeyName>?

 <ds:RetrievalMethod>?

 <ds:*>?

 </ds:KeyInfo>?

 <CipherData>

 <CipherValue>?

 <CipherReference URI?>?

 </CipherData>

 <EncryptionProperties>?

 </EncryptedData>

The root element of XML Encryption is

<EncryptedData> element that is used to store all

information regarding encryption process, divided into

previousely shown XML Schema elements. The

<EncryptedData> element is the core element in the

syntax. Not only does its <CipherData> child contain the

encrypted data, but it's also the element that replaces the

encrypted element, or serves as the new document root.

<EncryptionMethod> is an optional element that describes

the encryption algorithm applied to the cipher data. If the

element is absent, the encryption algorithm must be known

by the recipient or the decryption will fail. The

<EncryptedKey> element is used to transport encryption

keys from the originator to a known recipient(s). It may be

used as a stand-alone XML document, be placed within an

application document, or appear inside an

<EncryptedData> element as a child of a <ds:KeyInfo>

element. The key value is always encrypted to the

recipient(s). When <EncryptedKey> is decrypted the

resulting octets are made available to the

<EncryptionMethod> algorithm without any additional

processing. The <CipherData> is a mandatory element that

provides the encrypted data. It must either contain the

encrypted octet sequence as base64 encoded text of the

<CipherValue> element, or provide a reference to an

external location containing the encrypted octet sequence

via the <CipherReference> element (1, 6).

The process of XML Encryption consists of several

steps:

1. to define an encryption algorithm that will be used –

XML encryption can use both symmetrical encryption and

the asymmetrical encryption. Considering this for

symmetrical algorithm DES and AES algorithms are

mostly used, and RSA is mostly used in the domain of

asymmetrical algorithms.

2. to choose a key transmission method – to ensure that

both sides have a necessary encryption and decryption keys

in case of symmetrical encryption a trusted third party is

1848 MIPRO 2012/ISS

used for key exchange. In case of asymmetrical encryption

a public key infrastructure is used to distribute the

necessary keys, and relations to them are ensured using

X.509 certificates.

3. to encrypt the primary data – using defined

encryption algorithms defined XML data are being

encrypted. The results of encryption are stored into XML

Encryption schema form.

VII. IMPLEMENTATION OF XML

ENCRYPTION

An example of application modules that can be used for

XML Encryption (encrypting and decrypting process) is

shown below (1, 9).

1. Encryption process

First it is necessary to create a <XmlDocument> object,

and load it into the XML file that will be encrypted:

XmlDocument xdoc=new XmlDocument();

xdoc.Load("encrypting.xml");

The next step is to create an <EncryptedXml> object, and

transmit the object of previous step to it as a parameter:

EncryptedXml exml=new EncryptedXml(xdoc);

The function GetNumberingKey() will provide us with key:

RSA numberingKey=GetNumberingKey();

exml.AddKeyNameMapping("id",

numberingKey);

The element that will be encrypted is being captured, and

data are being encrypted using encrypt method:

XmlNodeList xnode=

xdoc.GetElementsByTagName('cardid');

XmlElement xelement = XmlElement(xnode[0]);

EncryptedData encryptedNeedEncrypt =

exml.Encrypt(xelement,"id");

Finally, it is necessary to replace the unencrypted part of

the original XML file with the new encrypted data:

exml.ReplaceElement(xelement,encryptedNeedEn

crypt,true);

2) Decryption process

First it is necessary to load the encrypted XML file with

necessary keys and information:

XmlDocument xdoc = new

XmlDocument("encrypted.xml");

EncryptedXml exml = new

EncryptedXml(xdoc,documentEvidence);

RSA numberingKey = GetNumberingKey();

exml.AddKeyNameMapping("numbering",

numberingKey);

The second step is to decrypt the file using decrypt method:

exml.DecryptDocument();

VIII. CONCLUSION

XML signature is form of digital signature designed for

use in XML transactions. The XML Digital Signature

standard defines a schema that is used for storing the result

of a digital signature operation applied to (in most cases)

XML data. Like non-XML digital signatures, XML

signatures add authentication, data integrity, and support

for non-repudiation to the data that is object of XML

digital signing process. However, unlike non-XML digital

signature standards, XML signature has been designed to

both account for and take advantage of the Internet and

XML. A fundamental feature of XML Signature is the

ability to sign only specific portions of the XML content

rather than the complete document. This is relevant when a

single XML document may have a long history in which

the different components are authored at different times by

different parties, each signing only those elements relevant

to it. This flexibility will also be critical in situations where

it is important to ensure the integrity of certain portions of

an XML document, while leaving open the possibility for

other portions of the document to change. Since data

security – in form of data verification and authorization -

represents an important part of information system security

paradigm this article is addressing the questions and

possibilities of XMLDigSig usage in everyday information

system security procedures. Regarding all this XMLDigSig

presents a valuable mechanism in security of electronic

transactions that are mostly based on exchange of XML

data.

LITERATURE

[1.] Ahmed, S., Armstrong, L., Securing Web Services with XML aware

digital signatures, http://citeseerx.ist.psu.edu, 02.12.2011.

[2.] Alhir, S., The Object-Oriented Paradigm, 1998.

[3.] Champion, M., Ferris, C., Newcomer, E.,Orchard, D. Web Services

Architecture, 2002. http://www.w3.org/TR/2002/ WD-ws-arch-

20021114/, 03.11.2011.

[4.] Gerić, S., Vrček, N, Divjak, L., Modern Information Systems

Architectures and their Impact on Organizations, International

Academic Conference Social Technologies 2011: ICT for Social

Transformations, Mykolas Romeris University, Vilnius, Litva,

2011, pp. 33 - 38.

[5.] Gerić, S., Security of Web Services Based Service-Oriented

Architectures, MIPRO 33rd International Convention, Proceedings

of Information System Security, Opatija, 2010, pp. 208 - 213.

[6.] Gu, Y., Ye, M., Web Services Security Based on XML Signature,

JOURNAL OF NETWORKS, VOL. 5, NO. 9, 2010.

[7.] Simon, E.; Madsen, P. & Adams, C., An Introduction to XML

Digital Signatures, http://www.xml.com/pub/

a/2001/08/08/xmldsig.html, 12.11.2011.

[8.] Slama, D. et al: Service Oriented Architecture: Inventory of

Distributed Computing Concepts, Prentice Hall PTR, 2004.

[9.] Snell, J., Tidwell, D., Kulchenko, P, Programming Web Services

with SOAP, O’Reilly Media, 2001

[10.] Szyperski, C. (1998): Component Software: Beyond Object-

Oriented Programming, Addision-Wesley

[11.] ***: XML Encryption Syntax and Processing,

http://www.w3.org/TR/xmlenc-core/#sec-EncryptedKey,

12.09.2011.

[12.] ***: XML Web services fundamentals,

https://www6.software.ibm.com/developerworks/education/ws-

intwsdk51/ws-intwsdk51-2-1.html, 12.09.2011.

MIPRO 2012/ISS 1849

