
Evaluation of a development framework for a
mobile gaming platform with financial transfers

R. Hable*, E. Platzer*
* Evolaris Next Level GmbH, Graz, Austria

richard.hable@evolaris.net

Abstract - Mobile gaming is a research field of growing

interest due to increasing usage numbers and revenue rates.

The increases are mostly caused by improvements of mobile

devices and networks that enable better performance and

usability of mobile games. In this paper a new framework

for the development in a mobile gaming platform

environment is presented. The gaming platform includes

financial transfers that require specific precautions in the

development process as well as in the maintenance of the

platform. The development framework is evaluated in a

comparative research design against other available

frameworks that also meet most of these specific

requirements. Evaluation criteria applied in the

comparative setting are efficiency and effectiveness in form

of development effort and expenses. As a result we present

the differences between frameworks as well as

disadvantages and advantages of our framework regarding

economic as well as technical target values.

I. INTRODUCTION

We present and evaluate a framework intended to
support mobile gaming on mobile phones.

The requirements for products based on this
framework include supporting a large range of devices by
all major mobile phone producers and operating systems.
The games have to be competitive on both simple low-end
mobile phones and powerful high-end smart phones. In
addition to the gaming component, it is also necessary to
support financial transfers based on game success. Thus,
user account handling, transaction security, and
prevention of fraudulent manipulation have to be an
integral part of the system.

It is obvious from the requirements that tightly
integrated server and client components are required to
allow game development and operation with reasonable
investment of resources. Existing frameworks do not meet
these demands. Therefore, a new framework has been
designed based on the comprehensive requirements and
the current state of technology.

Major challenges during framework design were
finding reasonable compromises between development
effort and gaming user experience, and facilitating both
responsiveness and security of game play with limited
connectivity on the mobile Internet.

In the following chapters we first describe the current
state of practice concerning development of client-server
platforms for mobile devices. Then we present the main

design decisions and structures of our framework. Finally,
we show the results of a comparison with other
frameworks and concepts based on the method of
comparative analysis. The paper concludes with some
remarks on both a general and a specific level.

II. STATE OF PRACTICE

A. General Situation

Contrary to server software and desktop client
software, development for mobile devices is characterized
by fragmentation into several largely varying operating
systems and frameworks with non-neglectable market
share [1]. Additionally, the distribution of market share
and even the operating systems used by single
manufacturers are changing rapidly [2].

B. Development Strategies for Mobile Devices

In order to provide competitive products for a large
market share, normally several different versions have to
be created with little, if any, code reuse. However, several
frameworks are available which try to unify development
on different device classes while still providing the
specific look-and-feel and taking advantage of their
unique hardware capabilities [3].

Another approach is to create server-centric software
and thus to minimize client-specific code as much as
possible, e.g. in [4]. The main task of the client software
then is to interpret commands sent from the server. Most
interactions with the user are based on business logic
implemented by server software, which can be the same
for all mobile clients.

One may even choose to create web applications
instead of native applications and thus avoid installing
application-specific software on the mobile devices
altogether [5]. These applications rely on the common
capabilities of web browsers pre-installed on modern
smart phones. This, however, can lead to poor user
experience caused by weak performance and the inability
to use the native APIs of the mobile devices [6].
Nevertheless, platform-specific extensions can be used to
approximate native look-and-feel to some extent.

C. Development of Mobile Games

The main task of many mobile applications is to
provide information to the user either edited locally or
gathered from the Internet. These requirements can

554 MIPRO 2012/CTI

usually be fulfilled both in native and in web applications.
Mobile gaming often requires taking advantage of the full
hardware and operating system capabilities of the device
in order to be competitive. Thus, native programming with
largely different development environments [7] can be
absolutely necessary.

However, even high-performance, stand-alone games
can profit from server support, e.g. in order to allow
central multi-player user management and sharing of
game scores [8].

In the case of mobile games which include financial
transfers security aspects become additional design
criteria. In principle the more operations are server-based,
the more control can be enforced over user actions and
thus fraud can be detected more easily.

D. The Role of Frameworks

When creating non-trivial applications for mobile
devices, in addition to principal software design decisions
it is important to carefully select tools, libraries and
frameworks to be used for the implementation. Since a
large number of both commercial and open-source
frameworks is available, one would rarely exclusively use
the tools recommended by the manufactures of mobile
devices.

Both server- and client-side frameworks can be used to
significantly reduce development effort and expenses. On
the client side, they usually offer the opportunity to unify
development [3] and thus allow code sharing across
mobile device classes. On the server side, they allow
implementing support services for the mobile applications
based on existing software, e.g. with efficient low-level
communication support [9].

III. FRAMEWORK DESIGN

A. A New Development Framework

The comprehensive requirements for the gaming
platform necessitate coordinated selection and application
of methods and tools. In particular, the necessity to
support secure financial transfers requires complete
control over both user actions and server transactions.

Back office support for accounting and payment can
be implemented in a quite straight-forward way as server
software using established technology like the Java
Platform, Enterprise Edition (Java EE) [10] for security
and scalability. Nevertheless, integration and deployment
have to be carefully aligned with real-time game play.

Development of actual games and the required server
support has to deal with a lot of uncertainties and also
restrictions concerning the supported devices and game
features. Therefore, this is the part where the important
design decisions and concrete implementations of the new
framework come into play.

B. Deployment Architecture

The framework has to integrate itself into the client
and server landscape installed for the gaming platform.
Due to a large number of potential customers using the

platform at the same time and high reliability demands,
the platform has to be deployed on several, partly
redundant physical servers. Most of these aspects can be
ignored during game development, since game play is
independent from the division of tasks between the
supporting servers. However, the games have to be
flexible enough to connect and reconnect to different
server instances according to dynamically adapted game
server assignments.

 The following main software artifacts are involved in
the operation of the gaming platform:

• Game Client: an application running on mobile
phones communicating with a dedicated game
server.

• Game Server: server software supporting and
controlling game play. It communicates both with
an assigned number of game client instances and
the back office.

• Back Office: server software supporting
accounting and payment. It provides the game
server with user account information and receives
information about game results.

Game clients are available for different operating
systems, all of them using the same communication
protocol. Unified interfaces between clients and servers
allow sharing code between different devices and game
types. This also significantly reduces testing effort and the
risk of undiscovered security holes.

The server software is tightly connected with file
repositories and database management systems for game
delivery and logging purposes. Reliable full-fledged
logging is especially important, since financial transfers
are involved, which must be reproducible particularly in
case of legal disputes.

C. A Rather Thin Client

The most crucial decision in framework design has
been to define the division of tasks between game client
and game server. User experience considerations for
conventional mobile games normally lead to native clients
for optimal performance. Network communication with its
limited speed and frequent delays is avoided whenever
possible.

In our framework, however, we must maintain a tight
connection between game clients and their assigned game
servers. The game server always has to know about the
current state of game play in order to be able to respond
appropriately to situations like unexpected game
termination. The user should not lose credit gained during
game play due to technical problems. On the other hand, it
must not be possible to cheat by interrupting game play
intentionally before losing a game.

It was, therefore, necessary to find a solution which
combines continuous client-server communication with
high performance and responsiveness in order to gain both
an attractive gaming experience and the necessary security
and monitoring of game play. This was achieved in two
ways: using an efficient communication protocol between
the client and the server, and supporting complex

MIPRO 2012/CTI 555

independent client actions for performance-critical tasks
like animated graphics. Additionally, in order to avoid
having to transfer large amounts of data from the server to
the client, all graphics and sounds used within a game are
preinstalled.

Thus, the framework strives for a client-server model
combining centralized application logic and security of
thin clients with performance and user experience of rich
clients.

D. Communication Protocol

As a consequence of the centralized application logic,
communication between game client and game server is a
performance critical part of the gaming platform. The
framework also has to cope with widely varying hardware
capabilities of the mobile devices concerning connection
speed and reliability.

Based on earlier experiences with binary TCP and
UDP protocols, it was decided to develop a custom binary
TCP-based game message protocol (GMP) usable for all
communication between game clients and servers
independently of mobile device classes. This protocol
supports transferring structured game data objects
(GDOs), which are based on basic data types like integer
values and character strings. Values are encoded as
sequences of varying length, depending on the required
range and precision, in order to minimize the number of
transferred bytes and thus required transmission time.

GDOs are transferred within independent packets in
both directions. The protocol takes care of automatic
reconnection in case of connection problems and
automatic recognition of transmission losses. Thus, it frees
the game designer and the game client developer from
handling most exceptional cases possible during
communication on the Internet.

In order to prevent manipulation of transferred data all
communication has to be encrypted. Therefore the TCP
network connection is secured with Transport Layer
Security (TLS) by default.

E. Commands and Messages

Client-server communication is controlled by the
server sending event messages. These messages contain
command GDOs which tell the game client to perform
actions like drawing graphical objects on the screen or
playing sound appropriate to the game flow.

Some of these commands can take a significant
amount of time to perform, e.g. when showing an
animation. However, the client does not have to wait for
received commands to be completed before accepting new
commands. Instead, it stores all commands within separate
queues according to queue numbers assigned by the
server. Commands within different queues are executed in
parallel. In order to allow synchronized execution of
commands, special compound messages are supported,
which block execution within a queue until all included
commands are finished.

The client may respond to server commands with
information about user actions like pressing a button on

the mobile phone. The server will then adapt game flow
accordingly.

F. Game Resources

All graphics and sounds required for a game are stored
in the game client. Game designers have to provide these
resources for a large number of different devices.
Different image formats, resolutions and color depths are
used to show graphics adapted to the capabilities of these
devices. Similarly, different audio formats and different
bit rates are required to support sounds on all devices.

In addition to device-specific versions of resources, it
is also possible to define different themes for each game.
This way, different variants of the same game can be
created without having to change code in the game
software.

In order to easily keep track of available resources and
to create device-specific game client versions, all
resources of a game are specified within a device resource
definition file. This is an XML file containing elements
which assign unique numeric identifiers to resources
referenced via file paths. These identifiers are sent to the
game clients within server commands during game play
for efficient retrieval of embedded resources.

G. Code Generators

In order to reduce development effort for changes and
extensions, generators are provided which create server
and client code usable by the target systems.

1) GDO Classes

The structure of GDO objects is defined in a custom
interface definition language (IDL). An IDL file contains
names and components of all data objects transferable
between client and server. The GDO generator program
analyzes this file and creates one class definition for each
GDO. The programming language Java is used for server
code and Java-based game clients. Objective-C is used for
iOS clients, JavaScript for web application targets.

2) Device Resource Classes

In order to easily access resource objects within game
clients the device resource generator program analyzes
device resource definition files and creates classes
retrieving resources embedded in the game client. The
game client implementers can use this class to load
resources like graphics and sound into memory in a format
suitable for the operating system APIs.

IV. METHODOLOGY

A. General Approach

The framework is evaluated against other systems
using the method of comparative analysis. Different
criteria like development effort and user experience are
examined which may even be in conflict with each other,
allowing only an estimation of the quality of the achieved
compromise rather than an absolute grading.

556 MIPRO 2012/CTI

B. Comparison Targets

Our framework is based on several design decisions
which are not always self-evident. Therefore, we do not
restrict ourselves to evaluating it only against frameworks
providing similar concepts and functionality. Instead, we
also look at separate aspects of the framework, which
could have been handled quite differently.

1) Technology

Before even considering different frameworks,
technical implementations have to make basic choices
about the technology used. We include technological
decisions in our comparison because they are just as
important as the actual features provided by different
frameworks.

Sometimes such decisions are obvious: enterprise
applications which should not be restricted to a single
operating system will almost always use Java Enterprise
Technology [10]. Server frameworks will then be
restricted to products which can be used with Java
application servers. Since this was the case with our
framework, we do not compare it to systems based on
different server technology. Instead, a comparison
between the framework approach depending closely on
J2EE configuration mechanisms and a similar framework
with additional provisioning support [11] is made.

The requirements for our framework also include
support for a large number of different mobile phone
types. Therefore, we do not consider solutions based on
technology which can only be used with a single class of
devices. Based on this need to support mobile phones with
largely varying capabilities in a uniform server
environment, we compare the method chosen for network
communication with other possible approaches.

2) Framework Scope

Our framework is specifically intended to support
different types of mobile games with centralized server
support and high security demands. Therefore, we only
consider in our comparison other frameworks and
methods which could be used to achieve similar goals.
Stand-alone gaming frameworks or frameworks tailored
for only one specific type of game are not included.

We therefore compare native client development as
used in our framework with possible cross-platform
development methods.

V. RESULTS AND DISCUSSION

A. Deployment Architecture

For any mobile game using centralized services e.g. to
share game results, it is a logical step to distinguish
between game clients and game servers. However,
frameworks and possible strategies vastly differ
concerning the task distribution and the server landscape
used to support a potentially large number of players for
different games on different platforms.

See Table I for a comparison of the main deployment
options.

1) Multi-Platform Support

Reference [12] describes server support for an even
wider variety of platforms than our framework: In
addition to mobile phones, also potentially less connected
PDAs and mobile game consoles, but also high-
performance PCs, game consoles, and even arcade
machines are supported. Nevertheless, the server
architecture is characterized by (multi-platform) game
servers and additional back-end servers for CRM and
billing similar to our framework. A prototype first-person
shooting game was implemented; however, only PC and
arcade machine users were able to perform real-time
actions, probably due to the limited network connectivity
of the smaller devices.

2) Provisioning and Services

Our framework is mainly concerned with run-time
game support, leaving administrative tasks to explicitly
programmed and configured software on the J2EE
application server level. Other platforms as described in
[11] try to relieve game providers from managing the
system infrastructure. Services are installed which support
game provisioning, collect game metrics, and support
game content distribution with a sophisticated peer-to-
peer architecture for network communication.

Since in our framework all game resources are
embedded within the game clients, special content
distribution support is not necessary. Data transfer rates
between game clients and game servers are therefore
similar for all clients. Servers can be assigned fixed
numbers of players per game based on empirical
measurements without the need for dynamic load
balancing.

B. Communication

With efficient client-server communication being
crucial for user experience, frameworks attach great
importance to highly efficient network communication
when trying to allow real-time gaming even with mobile
phones. Table II gives an overview of the different
strategies which are described in the following
subchapters.

1) Leveraging the Mobile Network

A mobile gaming platform based on the 3GPP IP
Multimedia Subsystem (IMS) [13] takes advantage of the
specific features of the third-generation (3G) mobile data
network. Different Quality of Service (QoS) levels allow
optimizing network utilization according to the needs of
specific gaming tasks. The pre-defined IMS message

TABLE I. DEPLOYMENT ARCHITECTURES

Strategy
Consequences

Supported Game

Clients

Real-Time

Capability

Development

Complexity

J2EE-based
game server
assignmenta

mobile phones no low

Adaptable
according to
client types

PDAs, mobile
game consoles,
mobile phones,
PCs, arcade
machines

not on
mobile
phones

high

a. Framework

MIPRO 2012/CTI 557

types can be used to support interactivities between
players. The platform uses both the Media Gateway
Control Protocol (Megaco) for session control and an
XML-based protocol for game related information.
Standardized IMS services are also used for game
distribution and provide a frame for administrative tasks.

Compared to our framework, this platform offers more
possibilities for fine-tuning e.g. concerning different QoS
levels. Adhering to the IMS standards and protocols,
however, significantly limits freedom of design of the
overall architecture of the framework. Also, the principal
problems of networking efficiency could not be overcome
in the described prototype implementation: a game
(volleyball) with high requirements concerning network
delays was not playable via the GPRS network. Other
measurements [14] show that the same is valid for the
UMTS network.

2) Optimizing the Protocol

Responsiveness and throughput also depend strongly
on the protocol and data format used.

When using stream-based communication such as in
IP connections some kind of request-response pattern has
to be implemented. In case of our framework data packets
are exchanged between game servers and game clients. A
simple non-standard binary encoding is used in order to
minimize the amount of data that has to be transferred.
According to [15] using an efficient binary format
compared to uncompressed textual standard formats
significantly improves performance on the smartphone.
With the binary Protocol Buffers [16] format data size
could be reduced by between 40 and 60 % compared to
the textual XML and JSon formats. Reference [15],
however, also shows that highly compressed textual
formats are even more efficient than the binary protocol
concerning data size.

Therefore, it seems that using a compressed textual
standard format would be a good alternative to the binary
encoding used in our framework. This would allow using
standard libraries for encoding and decoding of messages
instead of having to manually implement serialization and
deserialization for the server software and the different
client systems. However, it is not clear if using standard
JSON or XML parsers plus effective compression libraries
would be efficient enough on all supported low-end
mobile phones.

3) Coping with Network Latencies

Even the most efficient protocol cannot eliminate the
principal delays which occur during communication
between game servers and game clients via mobile
Internet connections. Reference [17] shows that even
delays below 100 ms are noticeable by players of first-
person shooter games. This shows that architectures with
server-side game control are simply not suitable for some
types of games.

Game designers also have to be aware that different
mobile devices and reception qualities can lead to
different amounts of delays. The odds of winning or
losing a game must never depend on the speed of delivery
of information to the user.

C. Client Development Frameworks

Although our framework supports game clients for a
large number of mobile devices and operating systems, it
does not use any existing cross-platform framework to
reduce development efforts. We will compare this
development approach with alternatives described in the
following subchapters. See Table III for an overview of
the consequences.

1) Pure Web Applications

Due to the requirement of efficient performance on
low-end devices and competitive performance on high-
end devices, offering a game client as pure web
application was not considered satisfactory. However, it
would be possible to aim for hybrid solutions as
recommended in [6] and described in the following
chapters.

2) Embedded Web Applications

Web applications can be embedded within native
applications using tools like PhoneGap as described in [6].
JavaScript libraries like JQuery Mobile and Sencha Touch
can then be used to achieve near-native look-and-feel and
to access to some operating system APIs. This leads to a
unified programming language (JavaScript) and unified
screen design with HTML and CSS style sheets.

However, advanced JavaScript libraries are only
available for high-end devices, and the framework has to
provide good user experience for low-end devices too.
Web applications would also lead to lower graphical
performance and less efficient client-server
communication on all devices due to the exclusive use of

TABLE II. NETWORK COMMUNICATION

Strategy
Consequences

Encoding

Efficiency
CPU Load

Network

Latencies

Binary IP-
baseda

good low medium

Protocol
buffers

good low medium

IMS
Standards

medium high variable

Text-based
(compressed)

medium
(very good)

low
(high)

medium
(medium)

a. Framework

TABLE III. CLIENT DEVELOPMENT

Strategy
Consequences

User

Experience
Flexibility

Development

Effort

Native
Clientsa

very good very high high

Pure web
applications

poor low low

Embedded
web

applications
medium medium low

Cross-
platform

framework
good high medium

a. Framework

558 MIPRO 2012/CTI

Web technologies.

3) Cross-Platform Frameworks

Commercial products like Rhodes Rhomobile and
Appcelerator Titanium create native code for smart
phones based on a unified development environment [18].
In principle, this allows creating applications with
performance and user experience similar to native
applications.

These products, however, are not available for simple
phones. Therefore, they would only help to unify
development on some smartphones targets. The additional
requirement to use a different development environment
and possibly a different programming language seems to
make this an endeavor with doubtable benefits.

Instead of that the framework unifies development to a
certain amount with common portable Java libraries.

VI. CONCLUSION

A plethora of different tools and frameworks is readily
available for developers of both client and server software.
This includes software specifically designed to support
mobile gaming. Therefore, one might ask if developing
yet another framework makes sense both concerning
financial resource investment and successful
accomplishment of project goals.

However, any major software development project
requires an agreed-upon overall structure and consistent
use of tooling in order to avoid creating a system
resembling the tower of Babel. Overall design decisions
have to be made, and generally usable support code
connecting existing components for the project at hand
has to be created. A framework targeted to specific project
requirements is just a step further in the same direction.

The design of our framework has shown that even
broad requirements like different game types on different
devices can be supported largely with unified concepts.
Thus, development of a gaming platform can certainly
profit from this custom-made framework. Also, the
comparison with other systems and alternative approaches
has shown that our framework is competitive with regard
to development effort and achieved product quality.

The framework has been specifically designed to allow
adding new target platforms and new game types with
little development cost. It is not necessary to extend
existing game clients in order to allow for new game
concepts. Similarly, it is not necessary to change existing
games when new target platforms are added.

Nevertheless, the principal structure of the framework
with its generic game clients and tight client-server
integration imposes some limits on the possible types of
games and achievable user experience. Network
communication limits, for example, preclude real-time
action games, and the necessity to support largely
different target platforms prohibits game designers from
taking advantage of all advanced hardware capabilities of
high-end devices. Both problems will, however, become
less severe in the future due to improvements in network
connectivity and hardware capabilities even of low-end
devices.

In summary we consider the framework a success. The
design decisions proved themselves reasonable in
comparison with other systems and concepts. Still there is
room for improvement concerning new game types, future
mobile phone platforms, and general functionality.

REFERENCES
[1] D. Gavalas and D. Economou, “Development Platforms for
Mobile Applications: Status and Trends,” IEEE Software, vol. 28, no. 1,
pp. 77-86, Feb 2011.
[2] A. Hammershøj, A. Sapuppo, and R. Tadayoni, “Mobile
Platforms : -An analysis of Mobile Operating Systems and Software
development platforms,” presented at the CMI international conference
on social networking and communities, Copenhagen, Denmark, 2009.
[3] S. Allen, V. Graupera, and L. Lundrigan, Pro Smartphone
Cross-Platform Development: IPhone, Blackberry, Windows Mobile
and Android Development and Distribution. New York, NY, USA:
Apress, 2010.
[4] I. Arsov, M. Preda, and F. Preteux, “A Server-Assisted
Approach for Mobile-Phone Games,” in Mobile Multimedia Processing,
vol. 5960, X. Jiang, M. Y. Ma, and C. W. Chen, Eds. Berlin,
Heidelberg: Springer, 2010, pp. 170-187.
[5] M. Pilgrim, HTML5: Up and Running. 1005 Gravenstein
Heighway North, Sebastopol, CA 95472: O’Reilly Media, Inc., 2010.
[6] A. Charland and B. Leroux, “Mobile application
development: web vs. native,” Commun. ACM, vol. 54, no. 5, pp. 49–
53, May 2011.
[7] T.-M. Grønli, J. Hansen, and G. Ghinea, “Android vs
Windows Mobile vs Java ME: a comparative study of mobile
development environments,” Proceedings of the 3rd International
Conference on PErvasive Technologies Related to Assistive
Environments, New York, NY, USA, 2010, pp. 45:1–45:8.
[8] R. Hable and O. Petrovic, “A Platform for Server-Side
Support of Mobile Game-Based Learning,” in Serious Games on the
Move, O. Petrovic and A. Brand, Eds. Vienna: Springer, 2009, pp. 195-
208.
[9] C. Xu, “A New Communication Framework for Networked
Mobile Games,” Journal of Software Engineering and Applications, vol.
1, no. 1, pp. 20-25, 2008.
[10] P. J. Perrone, V. S. R. R. Chaganti, and T. Schwenk, J2EE
developer’s handbook. Indianapolis, Ind.: Sams Pub., 2003.
[11] A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha,
“Implementation of a service platform for online games,” Proceedings
of 3rd ACM SIGCOMM workshop on Network and system support for
games, New York, NY, USA, 2004, pp. 106–110.
[12] J. Han, I. Kang, C. Hyun, J.-S. Woo, and Y.-I. Eom, “Multi-
platform Online Game Design and Architecture,” in Human-Computer
Interaction - INTERACT 2005, vol. 3585, M. F. Costabile and F.
Paternò, Eds. Berlin, Heidelberg: Springer, 2005, pp. 1116-1119.
[13] A. Akkawi, S. Schaller, O. Wellnitz, and L. Wolf, “A
mobile gaming platform for the IMS,” Proceedings of 3rd ACM
SIGCOMM workshop on Network and system support for games, New
York, NY, USA, 2004, pp. 77–84.
[14] M. Busse, B. Lamparter, M. Mauve, and W. Effelsberg,
“Lightweight QoS-support for networked mobile gaming,” Proceedings
of 3rd ACM SIGCOMM workshop on Network and system support for
games, New York, NY, USA, 2004, pp. 85–92.
[15] B. Gil and P. Trezentos, “Impacts of data interchange
formats on energy consumption and performance in smartphones,”
Proceedings of the 2011 Workshop on Open Source and Design of
Communication, New York, NY, USA, 2011, pp. 1–6.
[16] G. Kaur and M. M. Fuad, “An evaluation of Protocol
Buffer,” Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon),
2010, pp. 459-462.
[17] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu,
and M. Claypool, “The effects of loss and latency on user performance
in unreal tournament 2003®,” Proceedings of 3rd ACM
SIGCOMM workshop on Network and system support for games, New
York, NY, USA, 2004, pp. 144–151.
[18] T. Paananen, “Smartphone Cross-Platform Frameworks : A
case study,” 2011. [Online]. Available:
http://publications.theseus.fi/xmlui/handle/10024/30221. [Accessed: 30-
Jan-2012].

MIPRO 2012/CTI 559

